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Interplay between Ising and six-vertex symmetries in a 
model for the roughening of reconstructing surfaces 

J Kohanoffti, G JugtS and E Tosattit11 
t International School for Advanced Studies, S t r d a  Costiera 11, 34014 Trieste, Italy 

Received 11 April 1990 

Abstract .  We study a generalization of the solid-on-solid (SOS) model recently 
proposed for the roughening transition of reconstructing and non-reconstructing FCC 
(1101 solid surfaces. The generalized model is expressed in terms of Ising variables rep- 
resenting nearest-neighbour atomic column height differences. The model is solved 
exactly for the order-disorder transition, obtained in the limit where all possible 
Ising configurations are allowed. In the opposite limit, where the local height con- 
servation rule is imposed to recover the BCSOS (or six-vertex) symmetry, finite-size 
transfer-matrix calculations yield a phase diagram where the reconstruction transi- 
tion (corresponding to the order-disorder transition in the other limit) is smeared out, 
and a roughening transition occurs at a higher temperature. The phase boundaries 
obtained in the two limits (Ising and BCSOS) are compamd. The model Hamiltonian 
contains a single parameter ( A ) ,  which connects in a natural way these limiting cases 
( A  = 0 and 03 respectively). We study by finitesize calculations a simplified version 
of this Hamiltonian, named the X-model, which just interpolates between the simple 
Ising model and Rys’s F-model. In particular, we analyse the behaviour of the cor- 
relation length and the heat capacity peak for the whole range of values of A, and 
the step free energy for X large enough. When the six-vertex constraint is gradually 
removed (by decreasing A),  the roughening temperature-still well defined near the 
BCSOS limit-is found to be almost constant down to a particular value of A ,  followed 
by a very fast growth towards T = 03 for X + 0. 

1. Introduction 

The theory of structural phase changes at  the surface of crystalline bulk materials is 
an active area of research in statistical mechanics. Of particular interest is the rough- 
ening transition of a solid surface, which determines the type of crystal growth mech- 
anism associated with the material in given thermodynamic conditions (van Beijeren 
and Nolden 1987). Nucleation of atomic steps, characterized by an energy barrier, 
dominates below the roughening temperature, whilst macroscopically the transition is 
associated with the disappearance of a specific crystal facet and the vanishing of the 
free energy for step formation. 

Much studied, amongst many examples, are the [110] faces of FCC noble-metal 
single crystals, which are also characterized by the possibility of presenting a recon- 
structed low-temperature smooth phase with a different (1 x 2 missing-row) symme- 
try from that of the bulk crystal structure. There has been considerable theoretical 
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(Jayaprakash and Saam 1984, Trayanov et a1 1989a, b) and experimental interest in 
the roughening of non-reconstructed FCC [110] noble-metal surfaces, particularly in 
the cases of Cu (Mochrie 1987, Zeppenfeld et a1 1989), Ag (Held et a1 1987) and 
Pb  (Prince el a1 1988, Yang et a1 1989). Less effort has been devoted so far to the 
problem of roughening in 1 x 2 missing-row reconstructed noble-metal surfaces, e.g. 
Au (Campuzano el a1 1985, Drube et a1 1989), Ir (Hetterich and Heiland 1989) and 
Pt (Salmer6n and Samorjai 1980, Robinson et a1 1989), in particular to the ques- 
tion of whether the roughening transition coincides with or follows the order-disorder 
reconstruction transition normally studied in these systems. 

Two other models have been proposed to date in order to provide a preliminary 
picture for the roughening of reconstructing surfaces. Villain and Vilfan (1988) have 
presented a statistics for the defect lines, and associated kinks, generated by thermal 
fluctuations within the 1 x 2 ground state configuration of Au [110]. Their analysis 
yields indications for two transitions, both Ising-like, one corresponding to  the order- 
disorder reconstruction at  T,, the other to the roughening at  T R ,  and with TR - T, x 
100 K in the specific case of Au. The second model, proposed by Levi and Touzani 
(1989), is stated in terms of an anisotropic and interacting six-vertex model which 
is solved numerically for the step free energy in order to establish the dependence of 
the roughening transition temperature on surface energy anisotropy. This model has 
the advantage of treating reconstructing and non-reconstructing surfaces on the same 
footing. 

In this paper we study a modified version of a third model, proposed earlier by 
two of the present authors (Jug and Tosatti 1990a, b) in order to  describe the depen- 
dence of both the roughening and deconstruction transition temperatures on surface 
energy anisotropy, as well as to elucidate the nature of the structural phases present 
between T, and TR. A preliminary analysis (Jug and Tosatti 1990a, b) of the model 
to be described later has shown that TR > T,, that roughening is of infinite-order 
(Kosterlitz-Thouless) whilst deconstruction is possibly Ising-like, and that between 
the two transitions a sequence of disordered incommensurate phases is present as 
precursor to true roughening. Here we present alternative results from a finite-size 
transfer-matrix study (Kohanoff 1989) indicating that this picture is essentially cor- 
rect in predicting that TR > T, for all reconstructing surfaces. A short version of this 
work has been presented elsewhere (Kohanoff et a1 1990). 

The theory contains a parameter ti-the so-called surface energy anisotropy- 
which measures the tendency towards missing-row 1 x 2 reconstruction. For ti > 0 the 
1 x 2 reconstruction is more favourable than the unreconstructed ground state, while 
for ti < 0 the situation is reversed. We find that, while the roughening temperature 
TR is relatively insensitive to the anisotropy ti, there is a deconstruction temperature 
T, which falls to  zero for ti -+ O+, in order to rise again for K < 0. We propose that our 
Hamiltonian in the regime ti 0 provides a new description of the d o r m a n t  FCC [110] 
surfaces. By that term we mean surfaces having only a weak tendency to reconstruct, 
usually requiring extra forces-like those provided by some adsorbates-in order to 
develop a 1 x 2 reconstructed ground state. Examples of dormant FCC [110] surfaces 
are Cu [110] and Ag [110] (Hayden e2 a1 1983), and probably also Pd [110] and N i  
[ l l O ] .  Our results indicate that some kind of order-disorder transition should also 
be expected for such unreconstructed dormant surfaces. Moreover, the disordering 
temperature T, is lower for a dormant surface which is closer to the reconstruction 
point K = 0. 

The model can be written in terms of two sets of column height variables, {Itij} 
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and { r i j } ,  each set being defined on the sublattice of one of the two inequivalent lattice 
layers (see figure l ( a ) ) .  Here we study a modified version of the model of Jug  and 
Tosatti (1990), where the height differences sij,kl = hij  - l k l  between nearest-neighbour 
atomic columns a t  sites ( i , j )  and (k, l )  are restricted to take the values k l  in units of 
the vertical interlayer lattice spacing. With such constraint (i la van Beijeren (1977)), 
our SOS Hamiltonian can be written in terms of Ising variables sij (now representing 
nearest-neighbour height jumps between the two sublattices) as: 

7-i = -a 

where the { i , j }  are now sites of the dual lattice of the combined { h } U { l }  lattice. At 
this point, it is important to notice that in the BCSOS system-representing a solid 
surface-not all spin configurations are allowed due to the local height conservation 
rule (ice-rule, or six-vertex constraint, see figure l ( b ) ) :  

Si,jSl+l,j - ( a  - 2 ~ )  C si,jsi+l,j - Csi , j s i , j+ l  (1.1) 
i even,j i odd , j  , j  

s. ; , j  . - s. r + l , j  - Si , j+ l  + si+l,j+l 0 (1 .2)  
s .  r , l  ’ , S’ 
squares in figure l ( a ) ) .  With such constraint enforced, the model has the symmetry of 
a six-vertex (BCSOS) model (Baxter 1982) and could indeed be rewritten in terms of 
two compenetrating but. interacting six-vertex sublattices (Kohanoff 1989). However, 
no exact solution can be sought for this model, and we therefore resort (in section 
3) to approximate treatments such as the finite-size scaling extrapolation of exact 
calculations on lattice strips (Barber 1983). 

, si,j+l and si+l.,j+l being the spins of each elementary lattice cell (broken 
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( a )  Two-sublattice structure of the FCC [I101 surface. Figure 1. Large circles 
indicate h-sublattice sites (empty circles at quote 0, full circles at quote -2) ,  smaller 
circles hublatt ice sites (all at quote -1); for simplicity, both sublattices are taken 
as square. In this way, the left-hand side represents the ordered 1 x 2 structure, the 
right-hand side the 1 x 1 structure. + or - signs refer to nearest-neighbour height 
differences (‘spins’). ( b )  Spin configurations allowed in each elementary plaquette, 
owing to local height conservation. 

The last term ‘Hn in (1.1) is included in order to take into account this six-vertex 
constraint, and it is written 

U 
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where the symbol in the sum expresses that this term is included just for the 
broken squares (plaquettes) in figure l ( a ) .  In this way we consider constraint (1.2), 
but in a wider context since it is achieved only in the limit X + oo in equation 
(1.3). Furthermore for X = 0 an alternate-coupling k ing  model is realized. In general, 
we have constructed a Hamiltonian able to  connect continuously (by varying A) an 
Ising-like model to  another with the six-vertex symmetry. 

Ground state considerations on Hamiltonian (1.1) (for any value of A) show that 
the ferromagnetic +- (or -) uniform spin configuration-corresponding to  the non- 
reconstructed 1 x 1 T = 0 surface structure, for X + oo-is favoured for K = 4 p - 2 ~  < 
0, whilst the modulated ( + - - +) antiphase-representing the reconstructed 1 x 2 
T = 0 surface structure, always for X + oo-dominates for K > 0. a is a parameter 
between 0 and 1 representing the lattice parameter anisotropy, so that in the following 
we shall work with square sublattices. Thus K J ,  J being a measure of the atomic 
cohesion energy, can be loosely identified with the surface energy density anisotropy 
A = alllo] - fia[l l l l  between the [110] and [ill] interface structures. 

The aim of the present paper is to  provide a quantitative determination of the 
main phase-transition temperatures in the model thus defined. In the six-vertex limit, 
a t  high temperatures, we expect the surface to  become rough, in the sense that  the 
free energy for step formation f, will vanish a t  a specific roughening temperature 
TR. At a lower temperature and for K > 0 an Ising-type transition should occur in 
correspondence with the appearance of long-ranged 1 x 2 surface ordering. As pointed 
out elsewhere, this transition should arise owing to the double-degeneracy of the 1 x 2 
( + - - +) ground state in the model. In our case the energy of the ( + + - -) 
and ( - - + +) uniform configurations is different from that of the ( + - - +) and 
( - + + -) states. The latter are lowest in energy for K > 0 and degenerate, so 
that a t  T = 0 there is indeed an Ising order parameter. Nonetheless this does not 
guarantee the existence of an k ing  order-disorder transition at  a finite T,, as the true 
symmetry of the model is the six-vertex one, and not all possible thermally excited 
Ising configurations are allowed, owing to the constraint of local height conservation, 
equation (1.2).  I t  is interesting to  note that in the true physical 1 x 2 reconstructed 
systems, all four states are actually degenerate. In that case, the symmetry becomes 
that  of the two-dimensional A"NI model, were i t  not for the six-vertex constraint. 

The situation for K < 0 is, in principle, not symmetrical with respect to  K > 0. 
For K < 0 there is no reconstruction, and the 1 x 1 surface can take only two T = 0 
ordered configurations (++ + +) and ( - - - -). The former has { h }  as the uppermost 
sublattice, the latter has { I } .  These two ground states are degenerate, and therefore 
give rise to  an Ising order parameter as well. Again, considerations similar to  those 
for K > 0 can be applied to  this case. There is in general room for an Ising transition 
a t  T, > 0 whenever the six-vertex constraint is relaxed. Otherwise, we may expect 
disordering a t  T + 0 when the six-vertex constraint holds. 

The remainder of this paper is organized as follows. In section 2 we determine the 
phase boundary of the model by allowing all unrestricted Ising spin configurations, i.e. 
in the X = 0 limit of (1.1). This immediately yields the order-disorder transition line, 
which we determine by solving exactly the alternate-coupling Ising model. In section 
3 the phase boundaries for the physical, constrained Ising model (the X = 03 limit in 
(1.1)) are determined via finite-size transfer-matrix evaluations of the heat capacity 
and step free energy. Qualitatively there turns out to be no difference between the 
phase diagrams of the model in the two separate limits, Ising and six-vertex, as far as 
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is absent in the Ising limit, since the height variables become il l  defined, whilst the 
spin variables still hold. Finally, in section 4 we consider a simplified version of 
the Hamiltonian (1.1)) consisting of replacing the non-A-dependent part ,  by the bare 
k ing  Hamiltonian (isotropic, non-alternate)! which we shall call the A-model. Clearly 
the A-model does not contain the original model, because it does not have alternating 
interactions (particularly for what concerns the sign of these interactions). However, it 
is simpler than ( l . l) ,  and very close in several aspects. By means of this Hamiltonian, 
we are able to  study the continuous evolution (by varying A) of the thermodynamic 
quantities, from the unconstrained to the constrained limit, i.e. to understand how 
the Ising-like critical behaviour merges into a Kosterlitz-Thouless-like behaviour for 
increasing A .  We also study the roughening transition in the region of small values 
of A = exp(-A/T) (big values of A), where the height jump is still a well defined 
quantity, a t  least on average. These results should carry on to  a similar extension of 
the alternate-coupling Hamiltonian (1.1). 

2. Phase diagram for the unconstrained Ising Hamiltonian: exact solution 
(A= 0 )  

As pointed out in the introduction, it is of some interest to compare the phase diagram 
of the physical, constrained model-to be determined in the next section--with that 
of the same model where all Ising spin configurations are allowed on each elementary 
cell (‘sixteen-vertex’ model). The unrestricted Ising model for the surface structure 
has the important feature of being exactly solvable for the partition function, thus 
allowing for the possibility of testing our approximate transfer-matrix techniques for 
the determination of the model’s properties. The exact solution should give a t  once 
the Ising order-disorder transition expected to  be associated with reconstruction in a 
model with a doubly-degenerate ground state and king symmetry for the excitations. 
As an Ising model, Hamiltonian (1.1) in the limit A = 0 belongs to the class of models 
with alternating nearest-neighbour spin couplings in both directions, the most general 
spin Hamiltonian being: 

‘HIT = -I<, s i j s i+l j  - K ,  sijsitlj  
i odd, j  i even, j  

- K 3  si jsi j t1-K4 c SijSij t l  

i , j  odd i , j  even 

with K1). . , , K ,  the four alternating coupling parameters. Since the lattice bond 
covering is not of the chequered type (i.e. the type that can be obtained by replacing 
the black squares of a chess-board with a single cell of bond strengths), we are not in 
the position here to exploit the general solution method outlined by Utiyana (1951). 
We know of no published method for the exact solution of Hamiltonian (2.1), and 
hence we outline our derivation based on a generalization of Vdovichenko’s (1965) 
method for the solution of the Onsager problemt. In this procedure it can clearly be 
seen how to perform in practice the extension to other cases. 

t After completion of this work, however, the formal solution for a problem containing the present 
model has been proposed by Holzer (1990). 
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The partition function is 2 = 2,2,, with 

NI 2 

2, = 2 N  (fi 
r= 1 

where in equation (2.3) the product is over all pairs of nearest-neighbour sites and 
where U, = cosh(K,), tij,kl. = tanh(Kij ,kl) .  The product can be evaluated via the 
usual high-temperature lattice graph expansion (Domb 1960) 

2 N  

L=OI1+ +I*=L 

where t ,  = tanh(K,) and gN(l1,. . . , 14) is the number of allowed graphs containing 
I ,  bonds of strength t,, T = 1, .  , . ,4. By extending the sum to all graphs with inter- 
sections and weighting each site in a graph with a phase factor e1@iJ/2, 4 being the 
change in orientation of the vector tangent to the graph at  site i j ,  we arrive a t  f3 

2N 03 

2, = yx- (-1Y fN(L1) '..fN(Ls). ( 2 . 5 )  
S! 

L=O s = o  L l t  +L.=L 

Here, fN(L) is the contribution to  2, from all weighted single-loop configurations of 
L bonds : 

In order to  evaluate fN(L) we reduce the problem to that of a random walk lattice 
path,  weighted and oriented. Let us  assign an index a = 1, .  . . ,4 to each orientation 
of a lattice site: 1 = right, 2 = up, 3 = left and 4 = down, and introduce the quantity 
Wia'"ra'(z,z ')  as the sum over all weighted path configurations of L bonds between 
lattice sites z and z', starting at  z with orientation a and ending at  2' with orientation 
U'. The indices (Y and a' refer to  the sublattices to which the sites z and z' belong, 
each sublattice now including all those sites with the same nearest-neighbour coupling 
configuration. There are four such sublattices for our alternating coupling Ising model 
(but only two for the related chess-board model and one for the Onsager problem). 
The function Wia' laa ' ( z ,  2') satisfies the integral equation 

( 2 . 7 )  w;a'+qz, d )  = B a b q Z ,  y)W,-, b a ' , p a '  (y, 2') 
Y , h , P  

implying that  a path of L bonds can be constructed from a path of ( L  - 1) bonds 
via all intermediate configurations. The contribution from closed paths is obtained by 
taking the trace of W L ,  except that  in this way a closed loop conhibuting to  fN(L) 
appears 2L times: 
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so that for the partition function we obtain 

In order to  calculate the trace b,(L) of W~a' 'LIQ'(z,  2') we notice that this function 
remains invariant for translations of z and Z' by a lattice vector x that  leaves the sites 
in the same sublattices. This means that the function is invariant for translations 
within a single sublattice, and consequently equation (2.7) can be rewritten in terms 
of the Fourier coefficients of W and B :  

where 

(2.10) 

(2.11) 

Iterating equation (2.11) L times, we arrive a t  

(2.12) 

Since the translational invariance applies to a quarter of the total number of sites, we 
have, always in the limit N + a: 

and inserting equation (2.13) into equation (2.9) we obtain 

(2.13) 

(2.14) 

The  problem is again reduced to the determination of the matrix B ( p ) .  Here, 
defining the superindex p = ( a l a ) ,  we see that ,  in principle, we have to  evaluate a 
16 x 16 matrix. However the matrix can be reduced in size, since any site can be 
reached in one step only from its four nearest neighbours which belong to  just two of 
the four possible sublattices. A similar reduction applies to  the orientations, and thus 
the matrix B must have the form 

O B  
B = ( B z  ol> (2.15) 
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where B ,  and B, are 8 x 8 matrices such that det(1 - 6) = det(1 - B,B2) .  The 
calculation of B ,  and B,  proceeds as in Vdovichenko's paper, and we obtain: 

with 

( 2 . 1 6 )  

\""I 

O )  
t 3t4 e- " q  

0 t3t4eZiq 

where 

t,(q) = t3ee1q + t4e1q 

t , ( p )  = t,e-lp + tle'P 

tb(q) = -t3e-'9 + t4e1q 

td(p) = t2e-'P - tle'P 

and where a denotes e iXl4 and ( p , q )  = p .  A , ,  is obtained from A , ,  by interchanging 
t ,  with t, and t, with t,. 

The order-disorder phase transition of interest corresponds to  the vanishing of 
one of the eigenvalues of 1 - B ( p )  for p = 0,  ~ / 2  and q = 0 ,  which places the 
transition in the expected two-dimensional Ising universality class. Let us point out 
that  the particular wavevector p component leading to a vanishing determinant is 
related to  the modulation of the ground state; i.e. for K > 0 we have the antiphase 
(( - + + -), ( + - - +)) with a periodicity of four lattice spacings (two sublattice 
spacings), and hence p = x /2;  while for K < 0 we have the ferromagnetic phase 
(( + + + +)) with a periodicity of one lattice spacing, and hence p = 0 (or p = T ) .  

This is for the soft direction, while for the hard direction the periodicity is always 
of one lattice spacing, and hence q = 0. Were it not for the unenforced six-vertex 
constraint, the transition could be identified with reconstruction; notice, however, 
that  this would also be present for K < 0 in this model. The Ising transition lines 
are reported in figure 2,  which were obtained by numerical solution of the equation 
det (1 - B(0,O)) = 0 for T, as function of K < 0,  and det (1 - B ( ~ / 2 , 0 ) )  = 0 for K > 0 
(with (Y = 0.75 in model (1.1)). 

The availability of an exact solution for T, allows us to  test our transfer matrix 
methods to  be used for later numerical studies. Here we choose to use the iteration 
scheme of Cheung and McMillan (1983)  for the determination of the matrix eigenval- 
ues. In this scheme the transfer-matrix for a strip of width n,  

" 

q n ) ( x j !  xi+,) = JJ~XP ( I s ' i j , i j + 1 S i j S i j + 1  + I<i j , i+1js i js i+ l j )  (2.19) 
i = l  

is replaced by an (analytic) iteration relation for the amplitudes a,(ml ~ . , . , n ~ , ~ )  of the 
2"-dimensional vectors v ( C j )  upon which the transfer-matrix acts. These amplitudes 
arise from the representation 

Vj(Cj) = a j (ml  , . .  . , m,)sZ' . s;; 
m l ,  .. ,m,,=O,l 

(2.20) 
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1 
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-1.6 -1 -5 0 .6 1 1.6 

n 

Figure 2. Phase diagram for the model Hamiltonian (1.1) when the height con- 
servation constraint is relaxed and all Ising configurations are allowed ( A  = 0 ) .  Full 
lines denote the exact two-dimensional Ising transition lines, empty circles the results 
from the finite-size scaling analysis. 

of a vector in terms of spin operators, which has the advantage of providing an exact 
separation of the eigenvector space into even and odd subspaces with respect to  the 
global spin-reversal transformation { s i j  } i { - s i j } ,  separation which is preserved by 
our spin-reversal invariant Hamiltonian (2.1). The two dominant eigenvalues A 1  and 
A, (with (All > [A,[) then arise from iteration of amplitudes associated with the two 
orthogonal subspaces via the application of some iterated power method (Wilkinson 
1965). The amplitude iteration relation arises from the application of the transfer- 
matrix to an arbitrary vector 

Ujt l (k1, .  . , , k,)s;:;,. . d k ?  n j t l  

k i ,  . . . ,  k , = O , l  

{ s , j = f l }  i = l  

where u i j , k r  = cosh(li'ij,k,), resulting in the iteration relation 

aj+l(kl,.*.,kn) = c j ( h I , . . . , k n ; m l  , . . . ,  m n ) a j ( m l  , . . . ,  mn).  (2.22) 
m l  ,..., m. =0,1 

For the alternating coupling Ising Hamiltonian (2.1), the recursion relation has the 
form: 

c j ( k , m )  = ( u ~ " z ) " / Z 1 1 : t ~ : = l k , ~ j ( l ~ l : l i 2 , X : , m )  j = 3 , 4  (2.23) 

where the index j refers to  the column in the iteration along a diagonal strip and 
indicates that  two distinct matrices are required in the iteration. The function 
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Dj(Kl,  K 2 ,  k, m) in equation (2.23) is given by 

D j ( I < , , K 2 , k , m )  = Aj({si},I~l,K2)~~'fmn~kntm' 2 . . .  skntmn-l  (2.24) 
{ s , = f l }  

where 

- 4 3 ( { s j } , K 1 , K 2 )  = (1 t t l s l s 2 ) ( 1  + t 2 ~ 2 ~ 3 ) ( 1  +tl~3~4)...(1 +t,s,si) (2.25) 

and A4({si}, ICll IC2) = A3( {si}, IC2, ICl ) ,  indicating the alternancy of the coupling 
structure, thus of the transfer-matrix, along the direction of transfer. To compute Dj , 
observe that equation (2.24) implies the trace over the whole set of spin variables of 
products of the type A j ( { s i } ) s $ " .  .sP," , with p i  = 0 , l .  The parity of a spin configura- 
tion is given by the parity of the quantity k = k i .  Since the global spin-reversal 
invariance implies that  the transfer-matrix elements between different parity configu- 
rations must vanish, we see that p = Cy='=l p i  = k + m = zy=l(ki + mi) must be an 
even number, and hence the number of p i s  taking a value 1 must also be even. Let 
us denote by ( r l , .  . . , r p )  the sequence of places in the ordered sequence (pl,  . . . , p,) 
corresponding to  a 1. Now, a rather cumbersome calculation provides the desired 
result in terms of the r-sequence: 

D 3 (t  1' t 2 ,  k, m) = 2n(t"tr 1 2  + 1 
t ( ( n / 2 ) - 0 ) t ( ( n / 2 ) - 7 )  2 1. (2.26) 

In equation (2.24), D3 is the trace of the function A,@,  I<, , K 2 )  multiplied by a 
product of spins. The sum of the exponents of these spins is p = k + m ;  if p is odd, 
global spin-reversal invariance implies D3 = 0,  otherwise the number p ,  together with 
the binary vectors k and m, defines the r-sequence and consequently the exponents 
a and y in the following way. The power a is the number of IC, interactions within 
(1, r l )  U ( r , ,  r3) U * .  . U (rpl n )  in the column of spins attached to equation (2.25), and y 
is the number of K, interactions in the same set, plus one (counting the I<, int,eraction 
between s1 and sn). The other powers, ( ( n / 2 ) - a )  and ( (n /2)  - T ) ,  correspond to  the 
complement of the set above. As before, D4(Kl, K 2 ,  k, m) = D 3 ( K 2 ,  A'l , k, m).  Once 
the iteration relations c j ( k ,  m) are specified, repeated iterations . S .  c3c4c3c4. ' .  on an 
amplitude vector belonging to  either even or odd eigenspace yields the appropriate 
eigenvalue A,. The advantage of the transfer-matrix method of Cheung and McMillan 
is that the iterations can be carried out analytically and no re-orthogonalization is 
ever needed to  keep the two subspaces separate. As usual the eigenvalues yield both 
the free energy per site f ( T )  and the correlation length [ ( T )  via the equations 

(2.27) 

where A, and A, are the two dominant eigenvalues of T3T4. 

relation length, 
By making use of the phenomenological renormalization prescription for the cor- 

(2.28) 

an estimate for the position of the critical point of the transition can be obtained. 
We have carried out iterations for model (1.1) in the X = 0 limit, with cu = 0.75 and 
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for sizes n = 4 , 8 , 1 2  for n: > 0 (n  is a multiple of 4 in order to avoid parity problems 
associated with the  1 x 2  ground state),  and n = 4 , 6 , 8 , 1 0  for K < 0. The  extrapolated 
results are also reported in figure 2 (assuming the standard two-dimensional Ising 
corrections to scaling in order to perform the extrapolation) for some values of K .  

Comparison with the exact boundary lines demonstrate the accuracy of our numerical 
transfer-matrix approach. 

3. Finite-size scaling and phase diagram for the constrained Hamiltonian 
( A  = 03) 

We now come to the analysis of the physical limit for model Hamiltonian (1.1), where 
the six-vertex constraint is enforced on all the square cells of the spin lattice in order 
to recover height conservation for closed arbitrary paths, i.e. we now deal with X = co 
in (1.3). 

We have studied the phase behaviour of the model through the method of finite- 
size scaling (Nightingale 1981, Barber 1983) applied to the exact numerical evaluation 
of thermodynamic surface properties for infinite one-dimensional lattice strips. Height 
conservation is imposed in the determination of the matrix elements and eigenvalues. 
The  transfer-matrix elements for Hamiltonian (1.1) in this limit, are defined by equa- 
tion (2.19) for all configurations C and E’ compatible with each other through the 
six-vertex constraint, and are zero otherwise. In our case, convergence for increasing 
n is fastest for a transfer in the diagonal direction, and the full transfer-matrix breaks 
down in the product of two matrices alternating in the direction of transfer, due to  
the alternancy of the interactions. The  height difference at column j between the two 
strip edges is given by 

n 

i = l  

so tha t  the height conservation rule, equation (1.2),  automatically implies tha t  A h j  = 
Ahj+l  for periodic boundary conditions in the direction orthogonal to the transfer. 
The  full matrix is consequently of block-diagonal form, each block corresponding to  a 
particular height difference (Lieb and Wu 1972, Baxter 1982). Thus, we evaluate the 
free energy per site from the largest eigenvalue of the central block ( A h  = 0) 

(3.2) ~ ( K , T )  = --ln(X, T (0) ) 
2n 

whilst the free energy for step formation is given by 

f ,*(T) = --In 2 ($) (3 .3)  

with A y )  the  dominant eigenvalue of the  subcentral block ( A h  = 2) .  The results 
obtained for the  heat capacity per site are shown in figure 3 for strips of sizes 
n = 4 , 6 , 8 , 1 0  as a function of temperature for K < 0.  Similar results are shown 
in figure 4 for K > 0, although in this case convergence suffers from parity effects 
owing to the symmetry of the 1 x 2 ground state and consequently only results for 
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strip sizes n = 4 , 8  are shown. There is a peak for all values of K ,  the peak's tem- 
perature falling for decreasing Inl. For n > 0, the peak should be identified with the 
deconstruction transition, while for K: < 0 with an order-disorder transition as dis- 
cussed in the introduction. For sufficiently small values of In[, the finite-size scaling 
of the peak very closely resembles an Ising transition. On the other hand, for large 

J K C J  (of the order of a ) ,  the heat capacity peak appears to be saturating with increas- 
ing n ,  perhaps an indication for the drifting of the related critical exponent towards 
the Kosterlitz-Thouless value -W.  A possible explanation stems from the fact that ,  
while the energy of stepped defects is of order a, that  of flat ones is of order I K ( .  
Hence, for I K I  << a reconstruction involves mostly in-plane degrees of freedom, whilst 
for larger 161s competition with off-plane degrees of freedom will modify the nature 
of the reconstruction transition for K > 0. In figure 5 (lower curve) the position of 
the peak in the heat capacity is drawn as function of size n and anisotropy IC. For 
very small values of 1 ~ 1 ,  severe finite-size effects come into play, as the system becomes 
strongly quasi-one-dimensional. However there is indication that the curves approach 
the origin with infinite slope. For ti 21 -0.4 the position of the peak appears to  be 
independent of the size n, thus its value is determined exactly to  numerical preci- 
sion. For n = -2a, the model becomes exactly isomorphic to  an anisotropic BCSOS 
model. For a BCSOS model we know there is no second-order transition but instead an 
infinite-order transition preceded by a peak in the heat capacity, whose position can 
be determined exactlyt. We point out that  precisely for n = -2a our model recovers 
symmetry between h and 1 inequivalent layer sites. Through the above exact points 
a fitting curve has been drawn in figure 5 in order to  give a possible indication of the 
convergence of our finite-size evaluation. 

The position of the roughening transition in our model for K = -2a can also be 
determined numerically, by extrapolating the temperature dependence of the step free 
energy f, to  n = 00 and determining the temperature TR where f, vanishes. Good 
agreement is obtained with the exact result for the BCSOS model, though this method 
is not very precise for determining the roughening temperature (Luck 1981). For 
K: > -2a, a faster and more accurate convergence is obtained from the calculation of 
the following approximant to  f, 

(3.4) 

where X(Z0) represents the subdominant eigenvalue of tJhe central block. g, is an ap- 
proximant to  f, in that Ay) becomes degenerate with Ar) in the thermodynamic 
limit. However, gs becomes negative for T > TR in finite-size syst,ems, thus allowing 
for a more precise evaluation of TR. The resulting curves are given in figure 5 (upper 
curves), which complete our phase diagram. 

It is interesting to  notice the improvement of the convergence of the sequence 
{TR(n)}  towards TR as a function of increasing n,  as soon as the parameters of the 
model approach those of the BCSOS model. Indeed, for K = -2a, already the smallest 
size n = 4 gives the correct value to numerical accuracy. Since this result remains 

t In this case, the surface energy anisotropy parameter would be v = CY-' = (e l  - eS)/(e3 - e s ) ,  
with e, the vertex energies. Trayanov e t  a /  (1989, 1990) have previously presented a mapping of 
non-reconstructing FCC [110] surfaces onto an anisotropic BCSOS model. The present model can be 
r e g d e d  as an extension of theirs to include reconstruction tendencies. 
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a=-0.2 

a=-1.0 

1 2 3 4 

k T / J  

a=-0.5 

1 2 3 4 

1 2 3 4 

k T / J  

Figure 3. Finitesize and temperature dependence of the scaled heat capxity per 
site for non-reconstructing surfaces (1 x 1). Dotted line, n = 4;  broken line, n = 6; 
chain line, n = 8 ;  full line, n = 10. 

practically the same when size is increased, one can say that stepping in this model 
is a completely local phenomenon, in the sense that the interaction energy between 
neighbouring steps vanishes. The departure from the BCSOS model implies, therefore, 
that  steps become interacting. 

As for the nature of the roughening transition, we point out that  our model re- 
sembles that studied by Knops (1979)) in which two anisotropic compenetrating SOS 
lattices are constrained precisely by the same hij  - l i t j ,  = f l  condition on neighbour- 
ing columns. Knops proposes that ,  except for the non-alternating case, the transition 
should be Ising-like and occur under limited total height difference, whilst true rough- 
ening takes place at  T = 03. Here we see, from heat capacity studies, that  by varying 
n: the thermal exponent could change almost continuously, probably indicating the 
existence of weak universality conditions (Suzuki 1974). Also, the vanishing of the 
step free energy points to  a true roughening transition at  finite temperature. Natu- 
rally, much larger strip sizes should be considered in order to confirm our suggestion. 
We should stress here the difference between the roughening curve pertaining to  the 
present model and that determined by Jug and Tosatti (1990) for the original discrete 
Gaussian version of the model. In the case of the unrestricted model all height jumps 
are, in principle, allowed between neighbouring atomic columns, yielding a Kosterlitz- 
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z30.2 

1 2 3 4 6 8  

Figure 4.  As in figure 3, but for reconstructing surfaces (1 x 2 )  

Thouless transition temperature T R ( ~ )  vanishing for K > 2a. For the present model, 
the restriction on the value of height jumps between sites of the two coupled six-vertex 
sublattices leads to  a quite different behaviour, as was first advocated in the work of 
Knops (1979). 

4. 
strained Hamiltonians 

The lambda model: a continuous path from unconstrained to con- 

So far we have studied the phase diagram of the Hamiltonian ( 1 . 1 )  both in the un- 
constrained limit ( A  = o) ,  i.e. where condition (1.2) is completely relaxed; and in the 
constrained limit ( A  = m), i.e. where condition (1.2) is rigorously verified. The  first 
case was shown to present just a second-order phase transition of the Ising universality 
class. The other, the BCSOS limit, presents a pseudo order-disorder phase transition 
at  low temperatures, and a clear roughening transition at  a higher temperature. Our 
aim in this section is to  analyse the intermediate behaviour as a function of A ;  i.e. 
when condition (1.2) is partially relaxed through the additional term H o  given by 
equation (1.3).  For the sake of simplicity, as well as for its own intrinsic interest, we 
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5639 

Figure 5 .  Suggested phase diagram for the model Hamiltonian (1.1) with the six- 
vertex constraint enforced ( A  = m). The upper curves are for the smooth-rough 
transition; the lower curves represent the position of the roughening peak for K < 0, 
and of the Ising-like order-disorder transition for K > 0. Curves as in figure 4 .  

choose to  replace (1.1) with the simpler isotropic non-alternate Ising form 

We therefore study by the transfer-matrix technique the A-model (4.1) connecting the 
pure two-dimensional Ising model (A  = 0) with the F-model (A = CO) (Rys 1963). 

It is useful for what concerns the computational scheme to expand the squares in 
the second term of (4.1), in order to obtain a Hamiltonian composed just of twebody 
interactions. Besides a trivial constant part ,  the Hamiltonian reads 

A schematic representation of model (4 .2)  is shown in figure 6. 
We have studied two separate aspects of this model. The first is the behaviour of 

the correlation length as a function of temperature for various sizes. This allows for the 
possibility of following the continuous evolution from the Ising transition at  T,(X = 0) 
towards the Kosterlitz-Thouless one at  TR(X = CO). Moreover, we have been able to 
calculate the thermal critical exponent v ,  characterizing the universality class of the 
transition. The second is a study of the approximant to the effective step free energy 
close to  the six-vertex limit (i.e. for small values of A - l ) .  The temperature where this 
quantity vanishes is used to identify a renormalized roughening temperature TR(A) ~ 
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Figure 6. Schematic repreentation of the couplings involved in the X-model. Circles 
are sites of the spin lattice; light lines represent first neighbour couplings of strength 
-(J + 2X),  and bold lines, second neighbour couplings of strength 2 X .  

a t  least as far as the character of the eigenvectors associated with the eigenvalues A, ( 2 )  

and Xf)  can still be thought of as representing an average global height jump of 2 and 
0 lattice spacings respectively. 

4.1. Order-disorder transition 

We have studied the finite-size scaling behaviour of the correlation length, obtained 
via the ratio between dominant and subdominant eigenvalues of the transfer-matrix 
for finite systems of sizes 4 ,  6, 8 and 10 sites; using the second equation in (2.27). 
The resulting phase diagram is shown in figure 7, where it becomes clear that  the 
well known k ing  transition at  T, = 2 / l n ( l +  J2 )  (Onsager's result) for X = 0,  moves 
upwards with increasing X in order to  achieve the value TR = 4/ In 2 (Lieb and Wu's 
result) for X + ca. Actually, in this last limit the value obtained for T, is slightly 
smaller than TR, due to  the fact that  the definition of correlation length used is not the 
correct one. When X + 00 we have to  use for the correlation length the inverse of the 
step free energy, given by equation (3.3). From the derivative of the correlation length 
with respect to  temperature we have calculated the critical exponent v, through the 
formula 

where <' is the previously mentioned derivative, and is the estimate for the 
transition temperature corresponding to the crossing of the scaled correlation lengths 
for sizes n and n + 2. In the Ising limit, we know that v(X = 0) = 1 (Onsager 
1944); while in the six-vertex limit v is no more well defined since the correlation 
length diverges exponentially, instead of with a power-law. This kind of behaviour, 
if one insisted on computing v with formula (4.3),  would be consistent with a value 
v(X --t CO) + 00, which is indeed verified in the sense of a trend for increasing size, as 
can be seen in figure 8 where we present our results for the critical exponent v in the 
X-model, as a function of X for different sizes. The main result of this analysis is that 
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this model has a non-universal critical behaviour, reflected by a thermal exponent v 
continuously varying with X. In particular, there is a point a t  A - 2.6, where a lack 
of corrections to  finite-size scaling allows us to identify a critical exponent v N 0.85, 
different from Onsager's v = 1. Let us note, by the way, that  smaller values of v are 
characteristic of systems with a smaller number of degrees of freedom. 

t 1 
I I 

0 .2 .4 .8 .8 1 

exP(-A/J) 
Figure 7. Phase diagram for the X-model as resulting from the finite-size scaling 
of the correlation length with sizes n and n + 2.  The phase boundary is charac- 
terized by a continuously varying thermal critical exponent w. The upper phase 
(low-temperature) is ordered, and the lower one (high-temperature) is disordered, in 
terms of spin variables. The dotted line is for n = 4 ,  the broken line for n = 6 and 
the full line for n = 8. 

It is also interesting to analyse the behaviour of the peak in the heat capacity, 
another estimator for the transition temperature. We have performed this calculation 
by means of the first equation in (2.27) and present a plot of the peak's temperature 
in figure 9. I t  should be noticed the close relation of this phase diagram with that 
of figure 7, showing the critical temperature as obtained from the correlation length. 
Moreover, for X - 0.3, corrections to finite-size scaling seem to disappear, thus allowing 
for the accurate determination of one point in this phase diagram. By increasing X 
the peak broadens while decreasing in height (in order to  preserve the integral of the 
heat capacity per site), thus indicating the crossover from a situation with a true 
thermodynamic-limit divergence in Cv (for small A ) ,  to a system where the heat 
capacity is non-divergent (for large A ) .  Another feature of the heat capacity is that  
for large enough values of A, the peak appears to be made up by two peaks at  different 
temperatures. The lower-temperature peak approaches (for X + CO) the behaviour 
found in six-vertex models (figure 3, K = -1.5), though it represents the isotropic 
BCSOS model. The  higher-temperature peak seems to shift to infinity for X - CO, but  
its position strongly decreases with the size, in such a way that ,  when extrapolated for 
n -* CO, it seems to  merge with the other peak. Since this occurs for values of X > 8 it 
is not visible in the plot of the phase boundaries. However, this portion of the phase 
diagram is magnified in the inset of figure 9. Nevertheless, from these studies of the 
heat capacity it is very difficult to be conclusive about the nature of the transition in 
the whole range of A .  This is due to  the finiteness of the systems under consideration, 
and to  the fact that the finite-size scaling behaviour of a marginal operator-like the 
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I I I I I  I I 
2 4 6 8 10 .5 

0 

A I J  

Figure 8. Thermal critical exponent v as a function of ( U )  X and ( b )  exp( - X / J ) .  For 
X -+ 00 the finitesize v strongly increases with size, probably indicating an approach 
to v -.) CO consistent with a Kosterlitz-Thouless phase transition. The meaning of 
the three lines is the same as in figure 8. 

energy operator-is controlled by corrections to  scaling (Nightingale 1981). 

4.2. Roughening transition 

Conversely to  what was done in section 4.1, we can start from X * 03, which we 
know to correspond to the case of the F-model, and then progressively reduce the 
value of A. Since for X - CO T R  is determined through equation (3.4), we could, in 
principle, assume that for X sufficiently large (3.4) is still a good operational definition 
for a renormalized roughening temperature (TR(X)), although strictly speaking the 
height is no longer a well-defined variable a t  each lattice site. Nevertheless, for small 
A-’,  the six-vertex constraint violations must occur in a limited fashion; i.e. a single 
violation along the short strip direction is represented by the inclusion of an off- 
diagonal transfer-matrix block element of the order A = exp(-4X/T). These will be 
the matrix elements connecting blocks (of a block-diagonalized matrix) having different 
global height jumps, with a f 2  difference in Ah between the blocks (i.e. central (Ah = 
0) and subcentral (Ah = k2) blocks; Ah = f 2  and Ah = k4 blocks, etc). At the 
same time, double but opposite sign violations can occur inside a particular block, thus 
giving rise t o  elements of order A’. The X-model includes all Ising configurations, but 
weighted with a factor AQk14, 6 being the number of six-vertex constraint violations 
along the short direction of the strip, and q = s i j  - si+l,j - si,j+l + si+l,j+l the 
topological charge of the violating 4-spin plaquette (figure 1( a ) )  configuration (note 
that the six configurations shown in figure l ( b )  all have charge q = 0). 
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Figure 9. Phase diagram for the X-model as resulting from a study of the peak in 
the heat capacity. The dotted line is for n = 4 ,  the broken line for n = 6, the chain 
line for n = 8 ,  and the full line for n = 10. The inset is a magnification of the region 
of large values of A. 

Based on these considerations we can think of the X-model (in the limit of small 
A - I )  as representative of a surface in the presence of a small density of bulk disloca- 
tions, although these are not frozen in space (as is the usual case for screw dislocations 
propagating from the bulk), but are included in the statistical framework. In this 
sense, the model represents an alternative to Baxter's eight-vertex model (van Bei- 
jeren 1977, Knops 1979) where just  topological charges (Burgers vectors) q = 0 , 4  are 
taken into account. The  main point concerning the interpretation of the temperature 
arising from equation (3.4),  would be that the eigenvalues must preserve, on average, 
a well-defined global height j ump  between the two ends of the strip,  not very far from 
0 (A?') and 2 (X i2 ) ) .  A measure of this departure is given by 

where the are the components of the eigenvector corresponding to the eigenvalue 
Ai",, in the orthonormal basis formed by column configurations (dimension N = 2", 
with n the size of the strip). The  quantity Ahj is the global height j ump  associated 
with configuration i. Hence, we are counting the proportion of m-like states in those 
eigenvectors. 

We have carried out the calculation of TR(X) through equation ( 3 . 4 )  for strips 
of sizes n = 4 , 6 , 8  and 10, and we present the resulting renormalized roughening 
temperature as a function of X in figure 10. Two main aspects are to be stressed. The  
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first one is that  in the X-model, where the alternancy of the interactions is removed, 
the temperature TR(X, T I )  turns out to  be size-independent as in the BCSOS model; i.e. 
the pseudo-steps are non-interacting. The second concerns the behaviour of TR(A) as a 
function of A ,  and it can be seen that the roughening temperature shows a practically 
constant region down to X 2: 1.5. For values of X < 1.5, TR(X) is seen to grow very 
rapidly. Moreover, although for X = 0 the concept of height is ill defined, if one insists 
on looking a t  the behaviour of the zero of equation (3.4), the latter will turn out to  
occur a t  infinite temperature t. Therefore, the k ing  transition of the unconstrained 
Hamiltonian (2.1) cannot be identified with a roughening transition, but it represents 
rather well the in-plane disordering of a surface, despite the fact that  it does not have 
the expected symmetry. 

0 1 2 3 4 5 
A 

Figure 10. Renonnalized roughening temperature for the X-model. The result is 
size-independent to numerical accuracy for all values of A.  The phase transition can 
be interpreted as true roughening for values of X > 2 approximately, based on formula 
(4.4). 

5 .  Concluding remarks 

We have carried out an investigation on the general phase diagram structure of a model 
of roughening for anisotropic surfaces with a preference for a low-temperature recon- 
structed ground state. The phase diagram, composed of a low-temperature pseudo 
order-disorder phase transition and a high-temperature roughening transition of pos- 
sibly variable critical indices, confirms the proposal of Villain and Vilfan (1988) and of 
Jug and Tosatti (1990) that there should be two separate deconstruction and rough- 
ening transitions, for all surfaces having a 1 x 2 ground state. It is in fact interesting 
to  point out that  in a recent x-ray scattering experiment on P t  [110] (Robinson et a1 
1989) new evidence has been presented for a deconstruction transition a t  Tc - 1080 K 

t The X-model thus provides another example besides that of Knops's model (1979), of the spli t t ing of 
the six-vertex roughening into a low-temperature Ising-like disordering plus a very high temperature 
roughening transition. 
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leading to  a disordered phase with incommensurate correlations (corresponding to  a 
temperature-dependent shift of the diffraction peak). Although it is claimed there 
that  this new phase should also be rough, our results would rather suggest that a 
separate, higher temperature roughening transition a t  TR > Tc should, in principle, 
exist. Physically the lower transition a t  Tc corresponds to  proliferation of defects in 
the missing-row structure. It is only a t  T R ,  however, that  the defects become unbound. 
A very similar situation is predicted for Au [110], where Tc - 700 K (Campuzano e2 
a1 1985), and for Ir [110]. 

The present model also predicts two transitions-one of order-disorder character 
and a roughening transition at  a higher temperature-for FCC [110] surfaces which 
do not reconstruct. The difference between the two temperatures is larger the closer 
these dormant surfaces are to  becoming reconstructed. Precisely a t  the point where 
reconstruction sets in ( K  = 0) the disordering temperature appears t o  vanish, unlike 
the roughening temperature. It seems possible that the physics of, e.g. Cu [110] 
(Zeppenfeld e t  a1 1989), could be explained by a small negative K in the present 
model as a natural extension of the previous description by Trayanov et a1 (1989, 
1990) which did not include reconstruction tendencies. 

We have proposed, and studied by finite-size transfer-matrix calculations in a sim- 
plified version, a statistical model (the X-model) connecting continuously an Ising-like 
system with one presenting a six-vertex symmetry. Our results indicate the existence 
of a phase transition of variable critical exponents, associated with the order-disorder 
transition in the Ising limit, and drifting towards the non-divergent behaviour in the 
six-vertex case. Furthermore, the roughening transition, well defined in the six-vertex 
limit, is shown t o  be present also for finite values of A .  The temperature remains 
almost constant for a wide range of X values, and then rapidly grows towards infinity 
for X + 0. 
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